3.2.68 \(\int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\) [168]

3.2.68.1 Optimal result
3.2.68.2 Mathematica [A] (verified)
3.2.68.3 Rubi [A] (verified)
3.2.68.4 Maple [A] (verified)
3.2.68.5 Fricas [A] (verification not implemented)
3.2.68.6 Sympy [F(-1)]
3.2.68.7 Maxima [B] (verification not implemented)
3.2.68.8 Giac [F]
3.2.68.9 Mupad [F(-1)]

3.2.68.1 Optimal result

Integrand size = 33, antiderivative size = 136 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac {a^2 (3 A-8 C) \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (3 A-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \]

output
3*a^(3/2)*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+A*(a+a*sec 
(d*x+c))^(3/2)*sin(d*x+c)/d-1/3*a^2*(3*A-8*C)*tan(d*x+c)/d/(a+a*sec(d*x+c) 
)^(1/2)-1/3*a*(3*A-2*C)*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.2.68.2 Mathematica [A] (verified)

Time = 0.83 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.77 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^2 \left (9 A \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)+\sqrt {1-\sec (c+d x)} (3 A \sin (c+d x)+2 C (5+\sec (c+d x)) \tan (c+d x))\right )}{3 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x 
]
 
output
(a^2*(9*A*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] + Sqrt[1 - Sec[c + 
d*x]]*(3*A*Sin[c + d*x] + 2*C*(5 + Sec[c + d*x])*Tan[c + d*x])))/(3*d*Sqrt 
[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 
3.2.68.3 Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.10, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 4575, 27, 3042, 4405, 27, 3042, 4403, 3042, 4261, 216, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos (c+d x) (a \sec (c+d x)+a)^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {\int \frac {1}{2} (\sec (c+d x) a+a)^{3/2} (3 a A-a (3 A-2 C) \sec (c+d x))dx}{a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (\sec (c+d x) a+a)^{3/2} (3 a A-a (3 A-2 C) \sec (c+d x))dx}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a A-a (3 A-2 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 4405

\(\displaystyle \frac {\frac {2}{3} \int \frac {1}{2} \sqrt {\sec (c+d x) a+a} \left (9 a^2 A-a^2 (3 A-8 C) \sec (c+d x)\right )dx-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \int \sqrt {\sec (c+d x) a+a} \left (9 a^2 A-a^2 (3 A-8 C) \sec (c+d x)\right )dx-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (9 a^2 A-a^2 (3 A-8 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 4403

\(\displaystyle \frac {\frac {1}{3} \left (9 a^2 A \int \sqrt {\sec (c+d x) a+a}dx-a^2 (3 A-8 C) \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx\right )-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (9 a^2 A \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-a^2 (3 A-8 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx\right )-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {\frac {1}{3} \left (-a^2 (3 A-8 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-\frac {18 a^3 A \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{3} \left (\frac {18 a^{5/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-a^2 (3 A-8 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx\right )-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {1}{3} \left (\frac {18 a^{5/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {2 a^3 (3 A-8 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {2 a^2 (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{2 a}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d}\)

input
Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]
 
output
(A*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/d + ((-2*a^2*(3*A - 2*C)*Sqrt[ 
a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d) + ((18*a^(5/2)*A*ArcTan[(Sqrt[a]*T 
an[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - (2*a^3*(3*A - 8*C)*Tan[c + d*x 
])/(d*Sqrt[a + a*Sec[c + d*x]]))/3)/(2*a)
 

3.2.68.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4403
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[c   Int[Sqrt[a + b*Csc[e + f*x]], x], x] + Si 
mp[d   Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4405
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d 
_.) + (c_)), x_Symbol] :> Simp[(-b)*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m 
 - 1)/(f*m)), x] + Simp[1/m   Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m + 
 (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2 
*m]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
3.2.68.4 Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.40

method result size
default \(\frac {a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (9 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+9 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+3 A \cos \left (d x +c \right ) \sin \left (d x +c \right )+10 C \sin \left (d x +c \right )+2 C \tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(191\)

input
int(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x,method=_RETURNV 
ERBOSE)
 
output
1/3*a/d*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*(9*A*(-cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2))*cos(d*x+c)+9*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d* 
x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+3*A*cos(d*x+c)*sin 
(d*x+c)+10*C*sin(d*x+c)+2*C*tan(d*x+c))
 
3.2.68.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 330, normalized size of antiderivative = 2.43 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {9 \, {\left (A a \cos \left (d x + c\right )^{2} + A a \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (3 \, A a \cos \left (d x + c\right )^{2} + 10 \, C a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac {9 \, {\left (A a \cos \left (d x + c\right )^{2} + A a \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (3 \, A a \cos \left (d x + c\right )^{2} + 10 \, C a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorith 
m="fricas")
 
output
[1/6*(9*(A*a*cos(d*x + c)^2 + A*a*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x 
+ c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*s 
in(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(3*A*a*cos(d*x + 
 c)^2 + 10*C*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), -1/3*(9*(A*a*cos(d*x 
 + c)^2 + A*a*cos(d*x + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d 
*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (3*A*a*cos(d*x + c)^2 + 10 
*C*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x 
 + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 
3.2.68.6 Sympy [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)*(a+a*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)
 
output
Timed out
 
3.2.68.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 804 vs. \(2 (120) = 240\).

Time = 0.43 (sec) , antiderivative size = 804, normalized size of antiderivative = 5.91 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorith 
m="maxima")
 
output
1/4*(2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x 
 + c) - (a*cos(d*x + c) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) 
 + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c) 
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 
 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 
 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2 
*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d 
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2 
*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + 
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c) 
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*...
 
3.2.68.8 Giac [F]

\[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

input
integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorith 
m="giac")
 
output
sage0*x
 
3.2.68.9 Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \cos \left (c+d\,x\right )\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

input
int(cos(c + d*x)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2),x)
 
output
int(cos(c + d*x)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2), x)